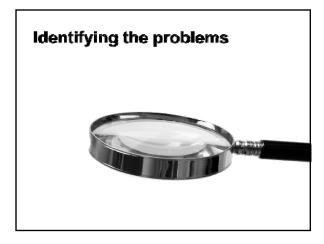
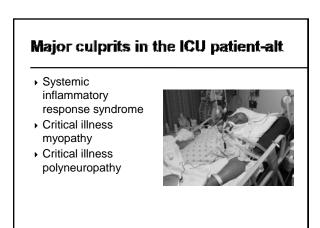


Disclosures


 Lori Burkhead Morgan, PhD, CCC-SLP
 Disclosure: *Financial* -Received an honorarium from Passy-Muir Inc. for this presentation. *Nonfinancial* -No relevant nonfinancial relationship exists.


Disclosures

 Passy-Muir, Inc. has developed and patented a licensed technology trademarked as the Passy-Muir[®] Tracheostomy and Ventilator Swallowing and Speaking Valve. This presentation will focus primarily on the biased-closed position Passy-Muir Valve and will include little to no information on other speaking valves.

Purpose of this talk

- Elucidate the impact of critical illness on the neuromuscular system and how this can impact swallowing & communication
- Identify rationale and simple interventions that can facilitate communication & swallowing

Systemic Inflammatory Response Syndrome (SIRS)

- → HR > 90 bpm
- ▶ Body temperature, 36 or >38°C
- WBC count, 4000cells/mm3
- SIRS + infection = sepsis

SIRS

- Occurs in adults and children
- Up to 50% of ICU patients on vent have SIRS
- 50-70% of those patients develop diffuse myopathy and polyneuropathy

SIRS

- Results in
 - Muscle weakness
 - · Difficulty weaning from the ventilator

Critical Illness Myopathy (CIM) & Polyneuropathy (CIP)

- Usually co-occurring
- Presents as ventilator weaning difficulty
- Seen in 25-63% of patients on vent >1 week
- Sensorimotor with motor predominance
- Limbs & respiratory muscle affected most
- Cranial nerves usually spared

Critical Illness Myopathy (CIM)

- Diffuse weakness
- Diagnosed with EMG studies & biopsy
- Type II muscle atrophy or undergo necrosis

"Offenders" specifically impacting communication & swallowing

- Deconditioning
- Endotracheal intubation
- Tracheostomy
- Ventilator dependency

Deconditioning Negatively Impacts Structure & Function

- Muscle atrophy
- Reduced force-generating capacity
 A.K.A., "strength"
- Lower endurance

Skeletal Muscle Composition

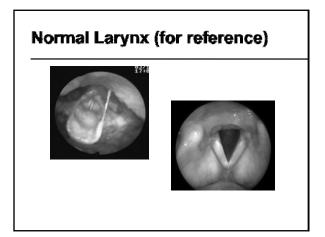
- Type I Slow-twitch, fatigue resistant
- Type II Fast-twitch, fatigable
 - Ila Adaptable, more efficient Type II fiber
 - IIb Best force generation, but inefficient
- Whole muscle contains blend with a predominance of one type

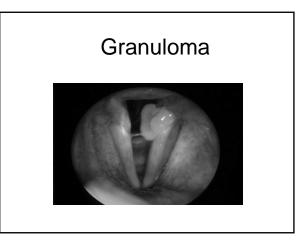
Oropharyngeal Muscle Composition

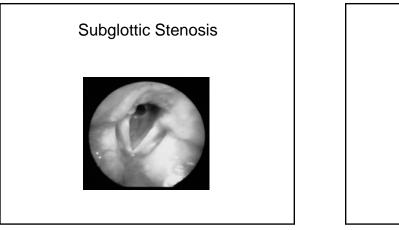
- Type II is predominant
- Type I, IIa, IIb and hybrid fibers
- Unique architecture
 - Regional differences in proportion & diameter of fibers
 - Complex arrangement

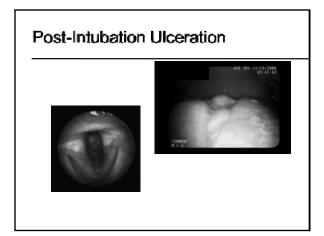
Kent, 2004.

What about communication & swallowing in the ICU?


- Intubation
- Tracheostomy
- Ventilator dependency
- NPO


Endotracheal Intubation


- Bypasses use of upper airway
 Disuse atrophy
 - Desensitization
- Trauma to mucosa, particularly larynx
- Cuff over inflation is common


Nasotracheal Intubation Because mouth is "available" patients are sometimes erroneously given ice chips, liquid, food, meds. Do not encourage mouthing to communicate Same complications as ETT

What contributes to structural deficits?

- Prolonged intubation (>2 weeks)
- Can happen quickly, not just in long-term intubation
 - $\,\circ\,$ Whited (1984); Colice (1992); De Larminat et al (1995)
- Trauma due to movement/friction

Incidence & Prevalence

- Laryngotracheal injury in 95% (39/41) of previously intubated patients.¹
- Dysphagia as high as 56% (27/48), with nearly half those patients aspirating silently Ajemian, Nirmul, Anderson, Zirlen, & Kwasnik (2001)²

1. Stauffer, Olson, & Petty (1981) 2. Ajemian, Nirmul, Anderson, Zirlen, & Kwasnik (2001)

What can you do to minimize intubation complication?

- Don't over-inflate cuff
- Secure tube to minimize movement
- Minimize patient movement
- Education
- · Sedation as necessary
- · Discourage "mouthing"
- · Convert to tracheostomy and Passy-Muir Valve placement sooner!

Airflow Changes with tracheostomy

- Airflow bypasses upper airway
- Deflated cuff and/or fenestration can facilitate some upper airway airflow

Impact of Tracheostomy on Voice, **Cough & Swallow**

- Larynx & upper airway are not involved in inspiration or expiration
 - Aphonia
 - · Desensitization
 - · No subglottic air pressure
 - Can disrupt swallow function
 - · Higher likelihood for silent aspiration
 - · Cannot cough to clear oropharynx or nasopharynx

What does research tell us about tracheostomy & swallowing?

Tracheostomy negatively impacts swallowing & laryngeal function...

- Bonanno, P. Swallowing Dysfunction After Tracheostomy. Annals of Surgery, 1971. 74(1): 29-33. Cameron JL, Reynolds J, Zuidema GD. Aspiration in patients with tracheostomies. Surg Gynecol Obstet 1972; 136: 68-70.
- Sasaki CT, Suzuki M, Horiuchi M, Kirchner JA. The effect of tracheostomy on the laryngeal closure relex. Laryngoscope 1977; 87: 1428-1433.
- Stauffer JL, Olson DE, Petty TL. Complications and consequences of endotracheal intubation and tracheostomy. A prospective study of 150 critically ill adul patients. Am J Med 1981; 70: 65-
- Buchwalter JA, Sasaki CT. Effect of tracheotomy on laryngeal function. Otolaryngol Clin North Am 1984; 17:41-48.
- Nash M. Swallowing problems in the tracheotomized patient. Otolaryngol Clin North Am 1988; 21: 701-709. .
- Mrz J, Mathog RH, Nelson, Jones. Aspiration in patients with head and neck cancer and tracheostomy. American Journal of Otolaryngology 1998; 10: 282-286. Elpern EH, Scott MG, Petro L, Reis MG: Pulmonary aspiration in mechanically ventilated with tracheostomies. Chest 1994; 105 (2): 563-566. ated patients
- Shaker R, Milbrath M, Ren J, Campbell B, Toohill R, & Hogan W. Deglutitive aspiration in patients with tracheostomy: effect of tracheostomy on the duration of vocal cord closure. Gastroenterology with tracheostomy: effe 1995; 108: 1357-1360.

Trach occlusion to reduce/eliminate aspiration & impact swallow physiology...

- Dettelbach, MA, Gross, RD, Mahlmann, J, &Eibling, DE, & Zajac, DJ. The effects of the Passy-Muir valve on aspiration in patients with tracheostomy. Head & Neck 1995; 17: 297-302.
- Eibling, DE, Gross, RD. Subglottic air pressure: a key component of swallowing efficiency. Annals of Otology, Rhinology, & Laryngology 1996; 105: 253-258. Sachler, RJ, Hamlet, SL, Choi, J & Fleming, S. Schitigraphic quantification of aspiration reduction with the Passy-Muir valve. Laryngoscope 1996; 106: 231-234.
- Logemann JA, Pauloski BR, Colangelo L. Light digital occlusion of the tracheostomy tube: a pilot study of effects on aspiration and biomechanics of the swallow. Head & Neck 1998; Jan;20(1):52-
- 7. Abraham, SS, Wolf, EL. Swallowing physiology of toddlers with long-term tracheostomies: a preliminary study. Dysphagia 2000; 15: 206-212. Gross, RD, Mahiman J, Grayhack JP. Physiologic effects of open and closed tracheostomy tubes on the pharyngeal swallow. Annals of Otology, Rhinology, & Laryngology Feb 2003; 112 (2): 143-152.
- (z), 1937102. Suiter, et al. Effects of culf deflation and one-way tracheostomy speaking valve placement on swallow physiology. Dysphagia 2003; 18(4): 284-92. Ding R, Logemann JA. Swallow physiology in patients with trach culf inflated or deflated: a retrospective study. Head & Neck 2005; 27: 809-813.

▶ CENTRAL

motor units

units

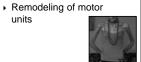
Decreased neural

activation ("drive")

· Decrease in number of

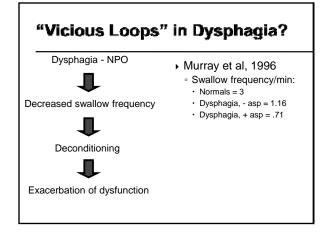
Muscle response to deconditioning & conditioning

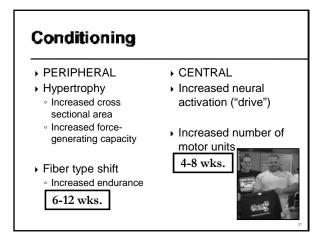
Deconditioned: Muscle-wasting, cachexia



Conditioned: John Burkhead - World record bench press, 515 lbs.

Deconditioning


- PERIPHERAL
- Atrophy
- · Loss in cross sectional area Decreased size Force-generating capacity
- ("strength") Fiber-type shift
- · More easily fatigued Sarcopenia
- Age-related reduction in muscle fibers
- Preferentially affects Type II


Deconditioning

- Muscle atrophy & deconditioning
 - 4-6 wks bed rest (young, healthy) = ~40% decrease in strength1
 - III & elderly even more susceptible²

1.Bloomfield, 1997 2.Urso et al, 2006.

Plasticity • Cortical reorganization • Blood flow changes • Peripheral muscle changes

"Our patients are too sick"

- If you do nothing you will improve nothing.
- Function may only get worse as you "wait" for the patient to "get better."
- Remember the concept of "vicious loops."

Lessons from Physical Therapy

- Early intervention
- ROM and facilitation are precursors to rehabilitating functional movement.

Exercise: When?

. The sooner the better

1.Bloomfield, 1997 2.Urso et al, 2006

- Muscle atrophy & deconditioning
- 4-6 weeks bedrest = ~40% decrease in strength¹
- Ill & elderly even more susceptible²

First things first....

- Restore the system to the most "normal" condition as possible
- Passy-Muir Valve use (in-line ventilator use or trach alone)

Passy-Muir Valve

- Only valve FDA indicated for use on/off vent
- Only valve indicated in research to impact swallow as well as voice
- Original intent was to be used in-line with vent

David Muir, inventor of the Passy-Muir Valve (Ventilator dependent due to Duchenne Muscular Dystrophy)

Physiologic Impact of the Passy-Muir Valve

- Airflow
- Oxygenation
- Sensation
- · Cough, secretion management
- Subglottic air pressure

Airflow Changes with Passy-Muir Valve

- Still inspire through tracheostomy
- Exhale through glottis & upper airway

Oxygenation with Passy-Muir ValveFacilitates end-expiratory pressure which increases alveolar surface area. Instrumental in gas exchange across blood/gas barrier.

Changes in Sensation with Passy-Muir Valve

•Airflow over mucosa promotes sensation

Glottis

- · Voicing
- Protective cough
- Pharynx
- · Clear secretions
- Swallowing
- TasteSwallowing
- Nasal Passages
- Clear secretions
- Smell

Mouth

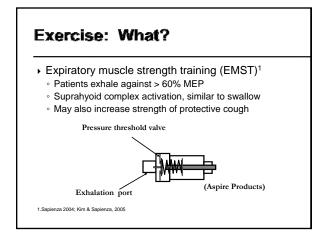
Changes in Cough with Passy-Muir Valve

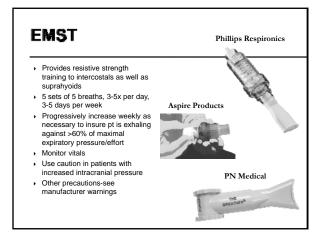
- Cough
 - Improved sensitivity to cough in response to noxious stimuli (secretions, aspirate)
 - $\,\circ\,$ More forceful due to subglottic air pressure
 - $\,\circ\,$ Now able to clear oropharyngeal secretions with cough

Changes in Secretion Management with the Passy-Muir Valve

- With more forceful, effective cough, less suctioning may be required
- Sensing/clearing secretions in upper airway
- Able to blow nose

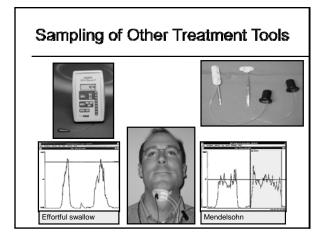
Restoration of Subglottic Air Pressure with the Passy-Muir Valve


 Important for voice production, cough, and swallow.



Passy-Muir a "SPEAKING" Valve and so much more!

- Unique design mimics a "more normal" system and physiology
 - Voicing
 - Pulmonary functions
 - Swallowing



MD order required

- Both Passy-Muir Valves and EMST devices are prescription devices, requiring MD orders
- A Speech Pathologist and/or Respiratory therapist will evaluate appropriateness of use and prescribe usage protocol

Fresenter Image: Stress of the stre

Additional Educational Opportunities

- Self-study webinars available on demand
 Getting Started
 - Ventilator Application
 - Swallowing
- Pediatric
- Special Populations
- Live group webinars
- www.passy-muir.com
- Passy-Muir Inc. is an approved provider of continuing education through ASHA, AARC, and California Board of Nursing Credit